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Executive Summary

High-assurance and complex mission-critical software systems are heavily de-

pendent on reliability of their underlying software applications. Predicting faults

early in the software life cycle can be used to improve software process control and

achieve high software reliability. Timely predictions of faults in software modules

can be used to direct cost-e�ective quality enhancement e�orts to modules that

are likely to have a high number of faults. Prediction models based on software

metrics, can estimate number of faults in software modules. Software metrics are

attributes of the software system and may include process, product, and execution

metrics.

A brief overview of a few software quality prediction modeling techniques is

presented in [15], as part of our research study sponsored by NASA's Independent

Veri�cation and Validation Facility [17]. Software quality models can be used to

predict quantitative values of a quality factor for software modules, e.x., number

of faults. Software organizations are interested in knowing the most optimum way

of utilizing their available quality improvement resources. Prediction models that

estimate number of faults in modules can be e�ective tools in software quality

estimation problems. An e�ective approach that further enhances the usefulness of

fault prediction models, is to allocate quality improvement resources by prioritizing

high-risk modules over low-risk modules.

Module-Order Modeling (mom) is an e�ective approach that facilitates ranking

of modules with respect to their predicted risk factor (for example number of faults).

Such a ranking can then be used by project managers to allocate enhancement

activities to needed areas depending on resource availability. Proposed continuation

(NASA Center Initiative FY2002) of our ongoing research with software quality

estimation models [17] will involve extensive research with module-order models.

An inherent feature of a module-order model is the underlying software quality

prediction model. The underlying prediction model is a foundation upon which a

module-order model is built, and due to this fact it is of great importance that an

appropriate modeling technique be used to build the underlying prediction model.

Module-order models use the prediction of the underlying model to rank modules

with respect to their estimated number of faults. The purpose of this report is

to present a comprehensive empirical study of some of the commonly used fault

prediction techniques. Models build by these techniques can be used as underlying

prediction models for the subsequent module-order models.

We evaluate the predictive performance of six commonly used fault prediction

techniques: cart-ls (least squares algorithm), cart-lad (least absolute devia-

tion algorithm), s-plus, multiple linear regression, arti�cial neural networks, and

case-based reasoning. Our research group at the Empirical Software Engineering

Laboratory at Florida Atlantic University has performed experiments using all of

the mentioned modeling techniques. The objective of our investigation is to deter-

mine the fault prediction performance order of the six techniques considered.

The case study presented in this report comprises of software metrics collected

over four historical releases from a very large-scale telecommunications system.
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Performance metrics, average absolute and average relative errors, are utilized to

gauge accuracy of di�erent prediction models. Comparative study is performed

using models based on both, original software metrics (raw) and their principle

components (pca) or domain metrics. Two-way anova randomized-complete block

design models with two blocking variables are designed with average absolute and

average relative errors as response variables. System release and the model type

(raw or pca) form the blocking variables and the prediction technique is treated as

a factor. Using multiple-pairwise comparisons, the performance order of prediction

models is determined.

We observe that for both average absolute and average relative errors, the cart-

lad model performs the best while the s-plus model is ranked sixth. The compar-

ative study presented in this report can be used to build cost-e�ective module-order

models that can facilitate in optimizing quality improvement resource usage.

Keywords: software quality prediction, software metrics, fault prediction, software

reliability engineering, cart, s-plus, multiple linear regression, arti�cial neural

networks, case based reasoning
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1 Introduction

Software reliability is an important attribute of high-assurance and mission-critical sys-

tems. Such complex systems are heavily dependent on reliability and stability of their

underlying software applications. The challenges involved in achieving high software re-

liability increases the importance in developing and quantifying measures for software

quality. Early fault prediction [21], a proven technique in achieving high software relia-

bility, can be used to direct cost-e�ective quality enhancement e�orts to modules that are

likely to have a high number of faults. A software fault is a defect that causes software

failure in an executable product [29].

Previous research [20] has shown that software quality models based on software

metrics [36, 37] can yield predictions with useful accuracy. Such models can be used to

predict the response variable which can either be the class of a module (e.x., fault-prone

or not fault-prone) or a quality factor (e.x., number of faults) for a module. The former

is usually referred to as classi�cation models [14, 23] while the latter is usually referred to

as prediction models [9, 38, 41]. The focus of this paper is on the latter, i.e., prediction

models. Software quality prediction models can predict quantities like number of faults

and software development e�ort. Software metrics used by the model and the response

variable are referred to as the independent variables and dependent variable respectively.

Over the last few decades many software quality modeling techniques have been de-

veloped and used in real life software quality predictions. A few commonly used modeling

techniques for software quality estimation include, regression trees [9, 14, 23, 38, 41], ar-

ti�cial neural networks (ann) [7, 24], case-based reasoning (cbr) [8, 23, 26], and multiple

linear regression (mlr) [2]. Other recently developed techniques that have also been used
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include, fuzzy logic [42] and optimal set reduction [3]. Many of these techniques facilitate

software quality estimation modeling using both classi�cation and prediction models.

Despite the fact that currently many techniques are used to build and apply pre-

diction models for real life software quality estimations, not many extensive studies have

been done that compare the performance of commonly used prediction modeling tech-

niques. Very few studies have performed comparative evaluations of a few of the available

techniques and methods, for example, Finnie et al. [7] and Gray and Macdonnel [10].

Gray and Macdonnel [10], use three small-scale case studies to evaluate software

development e�ort (or maintenance changes) estimation accuracy of prediction models

built using mlr and ann. The importance of factors other than predictive accuracy, such

as data characteristics, expertise, and interpretability have been demonstrated, however,

the comparative study lacks statistical veri�cation [2]. The overall conclusion was that

no single modeling technique can be used as a panacea for software e�ort estimation

problems.

Finnie et al. [7] compare models built using ann, cbr, and mlr. Similar to [7],

this study compares software e�ort estimation accuracy of di�erent modeling methods.

It was concluded that both ann and cbr gave similar accuracy, however, both of them

yielded better results than mlr. Statistical veri�cation using t-test was performed to

determine the signi�cance of their conclusions.

In both of the comparative studies mentioned, the case studies used were relatively

small-scale and the research did not include other available prediction techniques, such

as regression trees.

This study presents a comparative evaluation of predictive accuracy of six commonly

used software quality prediction modeling techniques or algorithms. These are, cart-
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least squares (cart-ls), cart-least absolute deviation (cart-lad), s-plus, mlr, ann,

and cbr. Software quality models that predict the number of faults in software modules,

were built using all of the six techniques. Performance metrics, average absolute error

(aae) and average relative error (are) are used to gauge the fault prediction accuracy

of modeling techniques. To our knowledge this is the �rst extensive study that compares

the fault prediction capabilities of commonly used modeling techniques using a common

large-scale case study.

The case study used to build models comprised of software metrics collected over

four historical releases from a very large legacy telecommunications system, abbreviated

as llts. Software metrics collected comprised of 24 product and 4 execution metrics, i.e.,

a total of 28 independent variables. Each system release has over 3500 updated modules

or observations. A common model building and validation methodology was adopted for

all six techniques. Release 1 was used to build the models while Release 2, 3 and 4 were

used to validate the �nal models. For each of the modeling technique considered, models

were built using both raw and domain (pca) metrics, and the models built are denoted

as llts-raw and llts-pca models, respectively.

cart-ls, cart-lad, and s-plus are tree-based prediction techniques [38] that pro-

vide simple white-box models which are attractive to analysts [4, 6]. To our knowledge

these are the only tree-based prediction techniques currently available. cbr [23] is a

problem solving technique which solves new problems by adapting solutions that were

used to solve old problems [26]. ann [24] adopt a learning approach to deriving a predic-

tive model. mlr [2] is a traditional statistical means of predicting a dependent variable

as a function of known independent variables. A more elaborate description of each of

these methods is presented in the later sections.
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Software metrics extracted (usually referred to as raw metrics) from con�guration

and problem reporting systems are often heavily correlated to each other [22]. This

is usually because they often represent measurements of related attributes of the given

software system. The correlation among the independent variables can often lead to poor

robustness and prediction accuracy of models built based on them. Principal components

analysis (pca) is a statistical technique that is used to alleviate the problems due to

correlation of independent variables. As we will see shortly, we use domain (pca) metrics

in addition to raw metrics to build and evaluate our prediction models.

The use of aae and are for comparing di�erent prediction techniques can sometimes

be di�cult and may lead to erroneous results. The problem is increased when comparing

models based on multiple releases [20]. A scenario with two releases is presented that

illustrates the possible di�culties. For Release 2, method A may have better aae than

method B, but for Release 3, method B may have better aae than method A. The

problem arises as to which release to use to compare methods A and B. The issue is

further complicated with the use of over 2 releases to compare modeling methods.

The comparative approach adopted by Finnie et al. [7] is not suited for comparing

models based on multiple releases. It is geared more towards case studies involving data

collected from only one project release, i.e., �t and test data sets are extracted from the

same release. A unique approach is adopted in our study to compare software quality

estimation models. The approach compares the models over all system releases, which

alleviates the problem addressed above.

Two-way anova (analysis of variance) randomized-complete block design models

with two blocking variables are built. These anova models use aae and are as the

response variables. System release (Release 2, 3, and 4) and the model type (llts-raw
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or llts-pca model) form the two blocking variables, while the modeling technique or

algorithm is treated as a factor. Release 1 is not used as a block since it was used to

build or train the fault prediction models. Model type was used as a blocking variable

(in anova models) to observe if models built using raw metrics were signi�cantly apart

from those built using domain metrics. It was observed that both models types per-

formed similar, however, it should be noted that models based on principal components

or domain metrics are more robust [22] than the corresponding models based on raw

metrics. anova models indicated that both system releases and modeling techniques

were signi�cantly di�erent from their respective counter parts. Multiple-pairwise com-

parisons [2] were performed to evaluate a performance or rank order of the six modeling

techniques considered.

Comparisons of fault prediction accuracy (based on aae and are) of the di�erent

modeling techniques considered in our study revealed the following performance order

(decreasing accuracy): cart-lad, cbr, mlr, ann, cart-ls, and s-plus. It is indicated

that cart-lad and cbr have better fault prediction than mlr, ann, cart-ls, and s-

plus. The superior performance of cart-lad and cbr as well as the inferior performance

of s-plus is veri�ed in a similar study that used data from other case studies [38].

The comparative technique presented in our study is not limited to only six modeling

methods. It can be extended to compare fewer or more prediction modeling methods.

However, data from multiple releases or multiple projects is needed to e�ectively uti-

lize anova design models (one-way or two-way) for performance comparisons of fault

prediction models for software quality estimation.

The layout of the of rest the paper is as follows. Description of the di�erent modeling

methods is presented in section 2. In section 3, the adopted modeling methodology,
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comparative techniques used, and related technical concepts are presented. Section 4

describes the case study used in our study. Sections 5 and 6, present the results and

conclusions of our comparative study.

2 Fault Prediction Techniques

This section presents a brief description of the fault prediction techniques compared in

this paper. Our research group has performed extensive empirical research in software

fault prediction modeling using all of the methods discussed, i.e, cart-lad [38], cart-ls

[38], s-plus [38], cbr [39], ann [24, 39], and mlr [39].

2.1 Classi�cation and Regression Trees

Classi�cation and Regression Trees (cart) [4] is a statistical tool for tree structured data

analysis. cart uses a regression tree to show how data may be predicted by a series of

decisions at each internal node of the tree. In regression, a case consists of data (xi; yi)

where, xi is the i
th measurement vector of independent variables and yi is the i

th response

variable. The cart regression tree algorithm partitions the input data set into terminal

nodes by a sequence of recursive binary splits. Binary splits are generated by cart,

based on the signi�cant independent variables. At each binary partition, the two subsets

are as homogeneous as possible with respect to the dependent variable, which in our case

is the number of faults in the software module.

cart regression tree algorithms initially build a large tree [4, 5], and then prune

it backwards using cross validation to avoid over�tted trees [18]. Starting with the �t

data set (learning sample L), three elements are necessary to determine a regression tree
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predictor:

1. A way to select a split at every internal node.

2. A rule for determining when a node is terminal.

3. A rule for assigning a value ŷ(t) to every terminal node. ŷ(t) is the predicted value

of the response variable for terminal node t.

cart provides three ways to estimate the accuracy of regression trees; resubstitution

estimate, test sample estimate and v-fold cross validation estimate. Empirical studies

in this paper use the v-fold cross validation estimate to evaluate regression tree models.

In a v-fold cross validation estimate, the learning sample L (�t data set) is divided into

v subsets of approximately equal size. (v-1) subsets are used as �t data sets while one

remaining subset is used as a test data set. v such trials are performed such that each

subset of the learning sample is used once as a test data set. The average error over these

v trials, gives the cross validation error estimate. In our empirical studies we have used

the 10-fold cross validation estimate approach.

Certain parameters can be controlled when building regression trees with cart.

These include number of terminal nodes, depth or level of regression tree, and node size

before splitting. The �rst two parameters by default are automatically forecasted by the

algorithm depending on the case study. The third parameter, node size, is set to 10 by

default. In our experiments in regression tree modeling for the llts case study [38] we

have used default values for these parameters.

In the following two sections we present the essential di�erences between the cart-ls

(Least Squares) and cart-lad (Least Absolute Deviation) methods of cart. Further in-

depth mathematical details including, tree pruning methods and standard error estimates
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of the cart regression tree algorithms can be found in [4]. The �nal tree models are

selected based on their cross validation1 (mean square or average absolute deviation)

relative errors, described in the following subsections.

2.1.1 Least Squares Method

This method generates regression trees using the within node mean value observed in

each terminal node as its predicted value. Ranking of regression trees of di�erent sizes is

evaluated based on the mean square error estimate. Given a learning sample L consisting

of (x1; y1); :::; (xN ; yN), L is used to construct regression trees and also to estimate their

accuracy.

The resubstitution error estimate for the cart-ls method, as a measure of accuracy

for a regression tree T is given by,

R(T ) =
1

N

X
t2T

X
(xn;yn)2t

(yn � �y(t))2 (1)

where, N is the total number of cases in the learning sample, t is a terminal node in the

regression tree T , and �y(t) is the mean value of response variables in t.

Given any set of possible splits S of a current terminal node t, the best split �s of

t is that split in S which most decreases R(T ). For any split s of t into tL and tR, let

�R(s; t) = R(t)�R(tL)�R(tR). Then the best split �s is given by,

�R(�s; t) = max[�R(s; t)] (2)

Thus, a regression tree is formed by iteratively splitting nodes so as to maximize the

decrease in R(T ). The best split at a node is that split which most successfully separates

the high response values from the low ones.

1Not to be confused with are (Section 3.2).
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When using the test sample estimate, a �t data set is used to build regression trees,

while a test data set is used to evaluate the accuracy of the tree models. The test sample

error estimate for the cart-ls method is given by,

Rts(T ) =
1

N2

X
(xn;yn)2L2

(yn � d(xn))
2 (3)

where, L2 is the test data set with N2 cases. d(xn) denotes the predictor corresponding

to the xn measurement vector of independent variables. The learning sample L1 is used

to build regression trees, while the test sample L2 is used to evaluate the accuracy of

trees.

The v-fold cross validation error estimate for the cart-ls method is given by,

Rcv(T ) =
1

N

X
v

X
(xn;yn)2Lv

(yn � dv(xn))
2 (4)

where, dv(xn) denotes the predictor for the v
th trial of the cross validation and Lv is the

vth subset of the learning sample L.

Let �y be a sample mean of y1; :::; yN , and set R(�y) as,

R(�y) =
1

N

X
n

(yn � �y)
2

(5)

Then the mean square relative error estimates for resubstitution, test sample and v-fold

cross validation are given by, R(T )=R(�y), Rts(T )=R(�y) and Rcv(T )=R(�y) respectively.

2.1.2 Least Absolute Deviation Method

This method generates regression trees using the within node median value observed in

each terminal node as its predicted value. Ranking of regression trees of di�erent sizes

is evaluated based on the mean absolute deviation estimate.
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The resubstitution error estimate R(T ) for the cart-lad method is given by,

R(T ) =
1

N

X
t2T

X
(xn;yn)2t

jyn � ~y(t)j (6)

where, N is the total number of cases in the learning sample, t is a terminal node in the

regression tree T and ~y(t) is the median value of the y values in node t. The splitting

criteria is analogous to that mentioned for the cart-ls method.

The test sample error estimate for the cart-lad method is given by,

Rts(T ) =
1

N2

X
(xn;yn)2L2

jyn � d(xn)j (7)

The v-fold cross validation error estimate for the cart-lad method is given by,

Rcv(T ) =
1

N

X
v

X
(xn;yn)2Lv

jyn � dv(xn)j (8)

Let ~y be a sample median of y1; :::; yN , and set R(~y) as,

R(~y) =
1

N

X
n

jyn � ~yj (9)

Then the absolute relative error estimates for resubstitution, test sample and v-fold cross

validation are given by, R(T )=R(~y), Rts(T )=R(~y) and Rcv(T )=R(~y) respectively.

2.2 S-PLUS Regression Trees

s-plus is a solution for advanced data analysis, data mining, and statistical modeling. It

combines an intuitive graphical user interface with an extensive data analysis environment

to o�er ease of use and exibility. Statistics in s-plus include regression tree models

among other data mining functions. At the core of the s-plus system is S, the only

language designed speci�cally for data visualization and exploration, statistical modeling
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and programming with data. S provides a rich, object-oriented environment designed for

interactive data discovery. With a huge library of functions for all aspects of computing

with data, S o�ers good extensibility.

In-depth mathematical details of the s-plus regression tree algorithm are presented

in [6]. The predictors are software metrics treated by s-plus as ordinal measures, which

are used to build regression trees to predict the response variable. The s-plus tree

algorithm that can process only numerical data, constructs a regression tree which is a

collection of decision rules. These rules are determined by recursive binary partitioning

of the training data set.

Decision rules can be controlled by the analyst by specifying certain parameters [6],

which limit the growth of the tree model. These parameters are minsize, the size thresh-

old which limits the number of observations in a leaf node and mindev, the uniformity

threshold which limits the allowable deviance in the leaf nodes. By controlling these

parameters the analyst can prune the tree model to the desired level. However, s-plus

provides a function that can be used to prune the tree after it has been constructed by

the algorithm, without sacri�cing the goodness-of-�t of the tree model [6]. In the course

of the s-plus regression tree algorithm, modules in the �t data set are assigned to tree

nodes. A software module is considered as an object.

Predictors are derived from software metrics as explained below. Let xij be the j
th

predictor's value for module i, xi be the vector of predictors for module i, and yi be the

response variable, i.e., number of faults. The algorithm initially assigns all the modules

in the �t data set to the root node. The algorithm then recursively partitions each node's

modules into two subsets that are assigned to its child nodes, until a stopping criterion

halts further partitioning.
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The deviance of module i is minus twice the log-likelihood, scaled by the variance,

which reduces to the following [6].

D(�i; yi) = (yi � �i)
2 (10)

where, �i is estimated by the mean value of y over all training modules that fall in the

same leaf as module i. The deviance of a node l is the sum of the deviances of all the

training modules in the node [6].

D(�l; y) =
X
i2l

(yi � �i)
2 (11)

The tree-building algorithm chooses the predictor whose best split maximizes the

change in deviance between the deviance of the current node and the sum of the deviances

of the prospective child nodes. The \best split" of a predictor partitions the current

node's set of modules into two subsets choosing the cutpoint that minimizes the sum of

the deviances of the left and right prospective child nodes. Partitioning stops when the

node deviance is less than a small fraction of the root node deviance.

D(�l; y)

D(�root; y)
< mindev (12)

or the number of modules in the current node is less than a threshold,

nl < minsize (13)

where, mindev and minsize are parameters [38].

Let L(xi) be the leaf that the i
th module falls into according to the structure of the

tree. The predicted value of the response variable for module i is the mean of training

modules in the leaf it falls into.

ŷi = �L(xi) (14)
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Empirical studies using regression tree modeling with s-plus, was performed by our

research team in [38]. Regression trees were built for the llts case study, by varying

parameters mindev and minsize. For each of the models, performance metrics aae and

are was computed and the �nal model was selected based on quality of �t values [38].

2.3 Case Based Reasoning

A cbr [23, 39] system arrives at a solution by retrieving past instances of the same or a

similar problem. The past instances are in a library of cases containing all known data.

Each case in the library contains information about the program module it describes,

which will include predictors and the response variable. A cbr system [26] can take ad-

vantage of availability of new or revised information, by adding new cases or by removing

obsolete cases from the case library. Good scalability of cbr provides fast retrieval even

as the size of the case library goes up. cbr systems can be designed to alert users when

a new case is outside the bounds of current experience.

The �rst step is to determine a good software quality model that can predict the

dependent variable with minimal error. This is done by varying the parameter which in

this case is the value of nearest neighbors. Let N be the complete set of nearest neighbors,

which are cases in the �t data set that are most similar to the present case in the target

(test) data set. The number of nearest neighbors, nN , (number of cases), is empirically

determined by the user.

A cbr model is the training data with associated parameters like similarity func-

tions, i.e., Euclidean Distance, Absolute Di�erence, or Mahalonobis Distance, solution

algorithms, i.e., Unweighted Average or Inverse Distance Weighted Average. The case
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library is also known as the �t data set and the new cases, whose number of faults is to

be predicted, is known as the test data set. The problem is to estimate the value of the

dependent variable for a future or currently developed program module, early in its life

cycle. The closer the predicted value is to the actual value, the better the accuracy of

prediction.

The model selection is done by using the case library as both �t and target (test)

data sets. Cross-validation is used to build the model. If the �t data set (case library) has

n observations, at each iteration one case or observation is removed from the case library

and the dependent variable (i.e., number of faults) is predicted using the remaining n�1

cases, i.e., the case library will have n� 1 observations and the target (test) data set will

have one observation. The one isolated observation acts as the test case to evaluate the

prediction made by the n � 1 cases. The prediction error (i.e., aae and are) of the n

iterations is computed and the cbr model with the least error is �nally selected. The

algorithms described below are used in the retrieval of the cases from the �t data set that

are most similar to the target module and to estimate the dependent variable.

The raw metrics in a software system module usually have vastly di�ering mea-

surement units and highly varied ranges. Often, each metric has a unit of its own.

Standardization is a technique that converts all the metrics to a uniform system of co-

ordinates so that they will all have the same unit of measure. For each metric, xi, the

standardized metric is given by,

Zi =
xi � �xi

si

where, �xi is the mean and si is the standard deviation of the ith metric, xi. All indepen-

dent variables in the data set are standardized to a mean of zero and a variance of one.
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While other studies used normalization technique [5], we used standardization (except

for Mahalonobis Distance function, in which neither is needed [39]).

A similarity function is used to compute the distance dij between the current module

i and each of the modules j in the case library. Let cjk be the value of the k
th independent

variable of case j, and let cj be the vector of independent variable values for case j. Let

xik be the value of the k
th independent variable for target module i, and xi be the vector

of independent variable values for module i. The Euclidean Distance is given by,

dij =

 
mX
k=1

(wk(cjk � xik))
2

!1

2

(15)

where, m is the number of independent variables and wk is the weight of the kth inde-

pendent variable. The Absolute Di�erence or City Block Distance is given by,

dij =
mX
k=1

wk jcjk � xikj (16)

The Mahalonobis Distance is given by,

dij = (cj � xi)
0

S
�1(cj � xi) (17)

where, (0) means transpose, and S
�1 is the inverse of the variance-covariance matrix

of the independent variables for all the modules in the case library. S becomes an

identity (unit) matrix and Mahalonobis becomes the Euclidean distance squared when

the independent variables are orthogonal (zero correlation [22]) and have unit variance.

When the independent variables are highly correlated and/or vary on vastly di�ering

scales, the Mahalonobis distance is a very good alternative to other distance measures.

Whenever the Mahalonobis measure is used, the independent variables do not need to be

standardized or normalized.
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The solution algorithm �nally predicts the value of the dependent variable, yi. The

Unweighted Average solution algorithm is given by,

ŷi =
1

nN

X
j2N

yj (18)

where, ŷi is the mean value of the dependent variable of the most similar nN modules

from the case library.

The Inverse Distance Weighted Average solution algorithm is given by,

�ij =
1=dijP
j2N 1=dij

(19)

ŷi =
X
j2N

�ijyj (20)

where, yi is estimated using the distance measures for the nN closest cases as weights

in a weighted average. Since smaller distances indicate a closer match and each case is

weighted by a normalized inverse distance. The case most similar to the target module

has the largest weight, thus playing a major role in prediction.

Fault prediction models were built by our research group [39, 16] for the llts case

study. All three similarity functions mentioned above were considered. The number of

similar cases, nN , selected from the �t data set is a signi�cant parameter during model

building process. The model whose nN results in the least value of aae with cross valida-

tion is selected as the �nal model [39]. Experiments were therefore conducted by varying

nN , to �nd the optimum value. It was observed that the Mahalonobis Distance func-

tion gave better prediction results as compared to prediction obtained with Euclidean

Distance and Absolute Di�erence functions. It was also observed that the Inverse Dis-

tance Weighted Average solution algorithm yielded better prediction than the Unweighted

Average solution algorithm. Thus, Inverse Weighted Distance Average together withMa-

halonobis Distance gave the best prediction results.
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2.4 Arti�cial Neural Networks

Arti�cial neural networks (ann) 2 are systems that are deliberately constructed to make

use of some organizational principles resembling those of the human brain. ann have

been studied since Rosenblatt [34] �rst introduced single layer perceptrons. Because of

the limitations of single-layer systems pointed out by Minsky and Papert [31], interest in

ann has been dwindling. Recent resurgence in the �eld of ann was encouraged by the

new learning algorithms [12], analog vlsi techniques, and parallel processing [28].

ann can be classi�ed, according to learning rules, into two categories, supervised-

learning networks and unsupervised-learning networks [27]. The ann we studied are

supervised learning networks. In supervised-learning, at each instant of time when input

is applied to an ann, the corresponding desired response of the system is given. The

network is thus told precisely what it should be emitting as output. In summary, we con-

�ne our study to feedforward supervised-learning neural networks, and backpropagation

[28, 12] neural networks in particular. Figure 1 illustrates the structure of a feedforward

supervised-learning neural network.

Neural networks consist of neurons. Figure 2 shows the structure of a neuron. In this

model, the kth processing element computes a weighted sum of its inputs xj (independent

variable) and basis bk as the input to the activation function, the output of the activation

function is the output of the neuron ok (dependent variable). Suppose there are m

inputs, x1; x2; :::; xm, to the neurons and the weights associated with these inputs are

2Notations in this Section are independent to those of other sections. They are used exclusively for

illustrating the theory of neural network.
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Figure 2: Anatomy of a neuron

w1k; w2k; :::; wmk. So the operation of the neuron can be described as following.

netk = w1kx1 + w2kx2 + :::+ wmkxm + bk (21)

ok = f(netk) (22)

where f(�) is the activation function of this neuron.

Backpropagation [35] is the most popular training algorithm for multilayer neural

networks. The algorithm initializes the network with a random set of weights and basis,

and the network trains from a set of input-output pairs. Each pair requires a two stage
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learning algorithm: forward pass and backward pass. The forward pass propagates the

input vector through the network until it reaches the output layer. First the input vector

propagates to the hidden units. Each hidden unit calculates the weighted sum of the

input vector and its interconnection weights. Each hidden unit uses the weighted sum

to calculate its activation. Next, hidden unit activations propagate to the output layer.

Each node in the output layer calculates its weighted sum and activation. The output

of the network is compared to the expected output of the input-output pair, and their

di�erence (error vector) is used to train the network to minimize the error, this is called

backward pass. First the error passes from the output layer to the hidden layer updating

output weights. Next each hidden unit calculates an error based on the error from each

output unit, the error from the hidden units updates input weight. The training stops

only when the sum of squared error satis�es the requirement or the number of epochs

passes the set point where an epoch means that all the training data go through the

forward pass and backward pass once.

The least mean square algorithm computes the weight updates for each input sample

and the weights are modi�ed after each sample. This procedure is called sample-by-

sample learning. An alternative solution is to compute the weight update for each input

sample and store these values (without changing the weights) during one pass through

the training set (epoch). At the end of the epoch, all the weight updates are added

together, and only then will the weights be updated with the composite value. This is

called batch training and is what we used in our case studies.

A neural network model was built for the llts case study (both raw and pca

data sets) in [39]. Since the neural networks use the unipolar sigmoid function as their

activation function for all the nodes, the dependent variable, number of faults, was scaled
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to the range [0,1]. After the training process, the result was converted back to the original

scale. The training data set was normalized to avoid a slow network training process,

and it was found that the training speed increased after normalization. The overall

architecture of the �nal neural network model was determined empirically, and further

details of our study is presented in [39].

2.5 Multiple Linear Regression

It is a statistical means of estimating or predicting a dependent variable as a function of

known independent variables. It is an equation where the response variable is expressed

in terms of predictors. The general form of a multiple linear regression (mlr) model can

be given by

ŷi = a0 + a1xi1 + : : :+ apxip (23)

yi = a0 + a1xi1 + : : :+ apxip + ei (24)

where, xi1; : : : ; xip are the independent variables' values, a0; : : : ; ap are the parameters to

be estimated, ŷi is the dependent variable to be predicted, yi is the actual value of the

dependent variable and ei = yi � ŷi is the error in prediction for the ith case.

The data available is initially subject to statistical analysis, with the aim to re-

move any correlation existing between independent variables and to remove insigni�cant

independent variables, not accounting for the dependent variable. The process of deter-

mining the variables which are signi�cant is known as model selection. Several methods

of model selection exist. They are forward elimination, stepwise selection and backward

elimination. Here, stepwise regression is used.

Stepwise regression [2] selects an optimal set of independent variables for the model.
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In this process variables are either added or deleted from the regression model at each

step of the model building process. Once the model is selected, the parameters a0; : : : ; ap

are then estimated using the least squares method. The values of the parameters are

selected such that they minimize
PN

i=1 ei
2, where, N is the number of observations in the

�t data set.

3 Methodology

In this section, we present a discussion of the approach adopted in comparing the di�erent

fault prediction modeling techniques discussed earlier. Theory and related principles of

our comparative technique is also presented in this section.

3.1 Building Fault Prediction Models

The generic model building and validation approach adopted in fault prediction modeling

with cart-ls [38], cart-lad [38], s-plus [38], cbr [39], ann [24], and mlr [20] is

summarized in the following steps.

1. Preprocessing Data: A few modeling tools demand preprocessing of data before

analysis. Some preprocessing may include, logarithmic transformation, standard-

ization, and grouping of data.

2. Formatting Data: �t and test data sets may have to be converted to a format

acceptable by the tool. For example, when using cart, data sets have to be

converted to the systat �le format [40].
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3. Building Prediction Models: Release 1, the �t data set is used to build di�erent

models. Certain parameters speci�c to the modeling technique (section 2), are

varied. Average absolute (aae) and average relative errors (are) of models built

are computed (for Release 1).

4. Selecting Prediction Models: Models with the lowest aae and are values are se-

lected as our �nal fault prediction models. In the case of cart-ls and cart-lad

the models were selected based on the lowest cross-validation relative error3 value

[38]. s-plus, ann, and mlr models were selected based on their quality-of-�t val-

ues [18, 38]. A cross-validation (with lowest aae) model selection approach [39]

was adopted for cbr.

5. Validating Prediction Models: Release 2, 3, and 4 are used as test data sets to

evaluate the prediction accuracy of the models selected. Performance metrics, aae

and are are computed. These are used to observe the estimation accuracy of

models.

3.2 Performance Metrics

Fault prediction accuracy of the models selected is determined by estimating performance

metrics. Two common statistics for evaluating predictions, average absolute error (aae)

and average relative error (are) are computed as,

AAE =
1

n

nX
i=1

jyi � ŷij (25)

ARE =
1

n

nX
i=1

�����yi � ŷi

yi + 1

����� (26)

3Not to be confused with are. Please refer to Section 2.1 for details.
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where, n is the number of modules in the target data set. The denominator in are has

a one added to avoid division by zero [25]. Our study compares fault prediction models

using both aae and are, since the e�ectiveness of one over the other is out of scope for

this paper.

3.3 Analysis of Variance Models

anova, abbreviated for Analysis of Variance, is a commonly used statistical technique

when comparing di�erences between the means of three or more independent groups

or populations. In our study we employ the two-way anova: randomized complete

block design modeling approach [2, 32], in which n heterogeneous subjects are classi�ed

into b homogeneous groups, called blocks so that the subjects in each block can then be

randomly assigned, one each, to the levels of the factor of interest prior to the performance

of a two-tailed F test, to determine the existence of signi�cant factor e�ects.

Selecting the appropriate experimental design approach depends on the level of re-

duction in experimental error required. Since the primary objective for selecting a par-

ticular experimental design is to reduce experimental error (variability within data), a

better design could be obtained if subject variability is separated from the experimental

error [32]. A two-way anova randomized complete block design, is a restricted random-

ization design in which the experimental units are �rst sorted into homogeneous groups,

i.e., blocks, and the treatments are then assigned randomly within the blocks.

We are interested in observing if di�erent prediction techniques are di�erent from

each other and if the system releases are di�erent from each other. We are also interested

in observing if principal components analysis [22] of the independent variables, results in
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better fault prediction accuracy of models. Substantial reduction in experimental errors

can be obtained if more than one variable is used for determining blocks [2]. We designed

two-way anova models using two blocking variables, namely, system release and model

type, i.e., models build based on raw metrics and their principal components.

aae and are values predicted by models for di�erent releases and data sets (raw

and pca) are the response variables in our experimental design models (anova), which

involve 6 factor treatments (six fault prediction techniques) and 2 blocking variables.

The �rst one has 3 blocks (system releases 2, 3, and 4) while the second one has 2 blocks

(raw and pca models). The p-values obtained from the anova design models (Table

5), indicate the signi�cance of the di�erence between the di�erent modeling methods,

between the di�erent system releases, and between the models built using raw and pca

metrics.

To develop the anova procedure for a randomized complete block design, Yijk, the

observation in the ith block (i = 1, 2, ..., b) of B and the kth block (k = 1, 2, ..., c) of C

under the jth factor level (j = 1, 2, ..., a), can be represented by the model,

Yijk = �+ Aj +Bi + Ck + �ijk (27)

where,

� = overall e�ect or mean common to all observations.

Aj = ��j� - �, a treatment e�ect peculiar to the jth level of factor A (method).

Bi = �i�� - �, a block e�ect (system release) peculiar to the ith block of B.

Ck = ���k - �, a block e�ect (model type, raw or pca) peculiar to the kth block of C.

�ijk = random variation or experimental error associated with the observation in the ith

block of B and kth block of C under the jth level of factor A.
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��j� = true mean for the jth level of factor A.

�i�� = true mean for the ith block of B.

���k = true mean for the kth block of C.

3.4 Hypothesis Testing: A p-value approach

Hypothesis testing is concerned with the testing of certain speci�ed (i.e., hypothesized)

values for those population parameters. Statisticians and software analysts alike, often

perform hypothesis tests [2] when comparing di�erent models. A null hypothesis, H0, is

tested against its compliment, the alternate hypothesis, HA. Hypotheses are usually set

up to determine if the data supports a belief as speci�ed by HA. These tests indicate the

signi�cance (�) of di�erence between two methods or populations.

The selection of the pre-determined signi�cance level �, may depend on the analyst

and the project involved. In some cases the selection of �, may be too ambiguous

or di�cult [1]. In such situations, it may be preferred to perform hypothesis testing

without setting a value for �. This may be achieved by employing the p-value approach

to hypothesis testing [1, 2]. This approach involves �nding a value p, such that a givenH0,

will not be accepted for any � � p. Otherwise, H0 will be not be rejected, i.e., � < p.

If this probability (p-value) is very high, H0 is not rejected, while if this likelihood is

very small (traditionally � 0:05), H0 is rejected. Hypotheses tests may be one-tailed

or two-tailed, depending on the alternative hypothesis, HA, of interest to the researcher

[1, 2].

In this study, we use the Minitab software tool [1]. The tool has provision for

statistical comparative analysis. We compute the p-values to determine if a prediction
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method is signi�cantly better than another method. These p-values are used in deciding

on the performance order of the di�erent fault prediction methods. In making decisions

regarding the rejection or non-rejection of H0, the appropriate test statistic would be

compared against the critical values for the particular sampling distribution of interest.

For our comparative study, we use the F statistic [2]. If the test statistic F , is distributed

as F (�1; �2), then p-value is given by,

p = PrfF (p; �1; �2) � F (�1; �2)g (28)

where, �1 and �2 are the degrees of freedom for the F distribution, F (p; �1; �2) is the

entry in the F-table [1], and F (�1; �2) is the computed statistic for the hypothesis test.

3.5 Multiple-Pairwise Comparison

The anova block design models do not specify or indicate which means di�er from which

of the other means. Multiple comparison methods facilitate a more detailed information

about the di�erences of these means. Speci�cally they provide a statistical technique to

compare two methods (ex., method A and method B) at a time. A variety of multiple

comparison methods are available, and for our study we employ Bonferroni's multiple

comparison equation [1, 2]. Hypothesis testing using the p-value approach (section 3.4),

is performed, yielding the p-value which indicates the level of di�erence between the

two methods being compared. The null and alternate hypotheses used for the multiple-

pairwise comparisons, using aae are given by equations 29 and 30. Comparisons for

are, are done by substituting are for aae in the below stated equations.

H0 : aaeA � aaeB (29)
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HA : aaeA < aaeB (30)

4 System Description

The data for the case study used in this paper was collected over four releases, from a very

large legacy telecommunications system (abbreviated as llts). Each release has approx-

imately 3500 to 4500 updated software modules. The software system is an embedded-

computer application that included �nite-state machines. The software was written in

protel, a high-level language, using the procedural development paradigm and was

maintained by professional programmers in a large organization.

A software module was considered as a set of related source-code �les. Fault data,

collected at the module-level by the problem reporting system, comprised of faults dis-

covered during post unit testing phases. Post unit testing phases recorded faults that

were discovered before and after the product was released to customers. Faults that were

discovered by clients were recorded only if the discovery resulted in changes to the source

code of the module.

Con�guration management data analysis, identi�ed software modules that were un-

changed from the prior release. Fault data collected from the problem reporting system

were tabulated into problem reports and anomalies were resolved. The number of mod-

ules that had faults were too few to facilitate e�ective software quality modeling. As a

result, we considered only the updated modules, i.e., those modules that were new or had

at least one update to its source code since its prior release. For modeling, we selected

updated modules with no missing data in relevant variables. These updated modules had

several millions lines of code, and there were a few thousand of these modules in each
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release.

The set of available software metrics is usually determined by pragmatic considera-

tions. A data mining approach is preferred in exploiting software metrics data [19], by

which a broad set of metrics are analyzed rather than limiting data collection according

to predetermined research questions. Data collection for llts involved extracting source

code from the con�guration management system. Measurements were recorded using the

emerald software metrics analysis tool [11]. Preliminary data analysis selected metrics

that were appropriate for our modeling purposes.

Software metrics for this system was collected over four di�erent releases. We label

these releases as Release 1, Release 2, Release 3, and Release 4. The number of ob-

servations in Release 1, Release 2, Release 3, and Release 4 were 3649, 3981, 3541, and

3978 respectively. The software metrics collected included 24 product metrics, 14 process

metrics and 4 execution metrics. The 14 process metrics were not used in our empir-

ical study, because our research study is focussed on early fault prediction of modules

for software quality modeling. Only the software metrics used in our empirical study,

are presented in this paper (tables 1 and 2). The data sets, consists of 28 independent

variables that were used to predict the response variable, number of faults in a software

module during post unit testing. We shall refer to this case study as llts-raw.

The software product metrics in Table 1 are based on call graph, control ow graph,

and statement metrics. An example of call graph metrics is number of distinct procedure

calls. A module's control ow graph, consists of nodes and arcs depicting the ow of

control of the program. Statement metrics are measurements of the program statements

without implying the meaning or logistics of the statements. The problem reporting

system maintained records on past problems. The proportion of installations that had



FAU Technical Report TR-CSE-01-32 32

Table 1: LLTS Software Product Metrics

Symbol Description

Call Graph Metrics

CALUNQ Number of distinct procedure calls to others.

CAL2 Number of second and following calls to others.

CAL2 = CAL� CALUNQ where CAL is the total number of calls.
Control Flow Graph Metrics

CNDNOT Number of arcs that are not conditional arcs.

IFTH Number of non-loop conditional arcs, i.e., if-then constructs.

LOP Number of loop constructs.

CNDSPNSM Total span of branches of conditional arcs. The unit of measure is arcs.

CNDSPNMX Maximum span of branches of conditional arcs.

CTRNSTMX Maximum control structure nesting.

KNT Number of knots. A \knot" in a control ow graph is where arcs cross

due to a violation of structured programming principles.
NDSINT Number of internal nodes (i.e., not an entry, exit, or pending node).

NDSENT Number of entry nodes.

NDSEXT Number of exit nodes.

NDSPND Number of pending nodes, i.e., dead code segments.

LGPATH Base 2 logarithm of the number of independent paths.

Statement Metrics

FILINCUQ Number of distinct include �les.

LOC Number of lines of code.

STMCTL Number of control statements.

STMDEC Number of declarative statements.

STMEXE Number of executable statements.

VARGLBUS Number of global variables used.

VARSPNSM Total span of variables.

VARSPNMX Maximum span of variables.

VARUSDUQ Number of distinct variables used.

VARUSD2 Number of second and following uses of variables.

VARUSD2 = VARUSD�VARUSDUQ where VARUSD is the total num-

ber of variable uses.
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Table 2: LLTS Software Execution Metrics

Symbol Description

USAGE Deployment percentage of the module.

RESCPU Execution time (microseconds) of an average transaction on a system

serving consumers.
BUSCPU Execution time (microseconds) of an average transaction on a system

serving businesses.
TANCPU Execution time (microseconds) of an average transaction on a tandem

system.

a module, USAGE, was approximated by deployment data on a prior release [13]. Exe-

cution times in Table 2 were measured in a laboratory setting with di�erent simulated

workloads.

Software metrics extracted (usually referred to as raw metrics) from con�guration

and problem reporting systems are often highly correlated to each other [22]. This is

usually because they often represent measurements of related attributes of the given

software system. The correlation among the independent variables can often lead to

poor robustness and prediction accuracy of models built based on them. Principal com-

ponents analysis (pca) is a statistical technique that is used to alleviate the problems

due to correlation of independent variables. Appendix A describes the details of principal

components analysis.

The dimensionality of the 28 raw metrics was reduced using pca. Earlier research

[20] indicated that the product and execution metrics groups of the raw data were not

correlated with each other. Hence, pca was performed only on the 24 product metrics.

Table 3 shows the six principal components extracted from the 24 product metrics of the

llts-raw data set. This table contains a 24� 6 matrix, in which the 24 rows represent

the product metrics while the 6 columns represent the principal components, PROD1,
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Table 3: Factor Pattern of Product Metrics for llts-raw

Metric PROD1 PROD2 PROD3 PROD4 PROD5 PROD6

CALUNQ 0.90241 0.05180 0.10442 0.23226 0.17394 0.06161

VARUSDUQ 0.89496 0.18889 0.15268 0.17704 0.14681 0.19375

LOC 0.88610 0.28067 0.18160 0.16929 0.16431 0.14445

NDSENT 0.87966 -0.11142 0.01770 0.18394 0.10988 0.17201

STMEXE 0.86869 0.25870 0.17612 0.17324 0.26880 0.07169

STMCTL 0.86701 0.26070 0.27411 0.17258 0.08509 0.17429

NDSEXT 0.84668 0.01970 0.10855 0.20099 0.08568 0.35294

STMDEC 0.84595 0.20127 0.14148 0.14922 0.07117 0.14898

IFTH 0.84569 0.34158 0.27880 0.18162 0.10404 0.10659

NDSINT 0.84185 0.34355 0.27606 0.15248 0.18487 0.10920

CNDNOT 0.83478 0.31173 0.26233 0.15217 0.23697 0.17495

LOP 0.82816 0.10817 0.20842 0.01714 0.02129 -0.09590

VARGLBUS 0.80191 0.35962 0.20123 0.14369 0.21197 0.20453

VARUSD2 0.79088 0.44096 0.27108 0.11186 0.18082 0.12928

CAL2 0.59715 0.20418 0.07284 0.19317 0.56903 -0.05255

VARSPNSM 0.39174 0.86022 0.17718 0.10430 0.06747 0.08423

VARSPNMX 0.14039 0.83489 0.17722 0.35150 0.10357 0.09136

CNDSPNMX 0.12121 0.27629 0.75661 0.14289 0.25648 0.30600

CTRNSTMX 0.32233 0.09595 0.70922 0.42101 -0.00726 -0.01574

CNDSPNSM 0.60974 0.21553 0.64240 0.00704 0.22007 0.13087

FILINCUQ 0.39561 0.25790 0.15541 0.72651 -0.03570 0.16963

LGPATH 0.21017 0.37957 0.35793 0.63962 0.16986 -0.04151

KNT 0.21362 0.06906 0.17464 -0.00640 0.88896 0.09719

NDSPND 0.40212 0.14886 0.21690 0.07507 0.08412 0.81557

Variance 11.61638 2.82091 2.37167 1.69515 1.64281 1.23002

% Var. 48.40% 11.75% 9.88% 7.06% 6.85% 5.13%

Cum. % 48.40% 60.15% 70.03% 77.09% 83.94% 89.07%

Stopping rule: at least 89% of variance

PROD2, PROD3, PROD4, PROD5 and PROD6. Each element in the matrix indicates

the correlation between a principal component and a raw metric. These 6 principal

components and the 4 execution metrics in Table 2 form the second set of data sets. We

refer to this case study as llts-pca.
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Table 4: llts-raw: aae and are values

Model based on llts-raw case study

Modeling Release2 Release3 Release4

Method aae are aae are aae are

cart-ls 0.948 0.618 0.942 0.602 1.407 0.838

cart-lad 0.705 0.324 0.803 0.391 0.867 0.418

s-plus 0.909 0.577 0.954 0.602 1.267 0.774

cbr 0.884 0.585 0.861 0.499 0.831 0.492

ann 0.946 0.584 1.016 0.620 1.249 0.749

mlr 0.890 0.571 0.960 0.602 0.926 0.584

Model based on llts-pca case study

Modeling Release2 Release3 Release4

Method aae are aae are aae are

cart-ls 0.972 0.647 0.975 0.633 1.113 0.682

cart-lad 0.727 0.344 0.823 0.407 0.860 0.456

s-plus 0.925 0.602 0.973 0.621 1.568 0.948

cbr 0.835 0.523 0.871 0.519 0.810 0.477

ann 0.887 0.555 0.948 0.576 0.989 0.615

mlr 0.875 0.567 0.976 0.626 0.954 0.637

5 Empirical Results

Two models were built for the llts case study using each of the six prediction techniques,

namely, cart-ls, cart-lad, s-plus, cbr, ann, and mlr. The �rst model was built

using the llts-raw data set while second model was built using the llts-pca data set.

Performance metrics aae and are are computed for the both models, and are shown in

Table 4. The values shown in Table 4 are for Release 2, 3, and 4 only since Release 1

was used as the �t data set.

The two-way anova randomized complete block design models built using aae and

are as response variables, comprised of two blocking variables, i.e., system release and

model type (raw and pca) and one factor, i.e., prediction technique. anova models
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Table 5: anova models for llts case study

Source DF SS MS F p-value

Average Absolute Error

Technique 5 0.4262 0.0852 5.99 0.001

Model Type 1 0.0022 0.0022 0.16 0.695

Release 2 0.2460 0.1230 8.64 0.001

Error 27 0.3842 0.0142

Total 35 1.0586

Average Relative Error

Technique 5 0.3688 0.0738 15.8 0.000

Model Type 1 0.0000 0.0000 0.00 0.989

Release 2 0.0657 0.0329 7.02 0.004

Error 27 0.1264 0.0047

Total 35 0.5609

Table 6: Multiple Pairwise Comparisons: p-values

Average Absolute Error

cart-lad cart-ls s-plus ann mlr cbr

cart-lad * 0.0019 0.0004 0.0134 0.1515 0.7328

cart-ls 1.0000 * 0.8092 0.9995 1.0000 1.0000

s-plus 1.0000 0.9982 * 1.0000 1.0000 1.0000

ann 1.0000 0.7158 0.3850 * 0.9999 1.0000

mlr 1.0000 0.1670 0.0506 0.5318 * 1.0000

cbr 0.9993 0.0124 0.0028 0.0742 0.4826 *

Average Relative Error

cart-lad cart-ls s-plus ann mlr cbr

cart-lad * 0.0000 0.0000 0.0000 0.0000 0.0090

cart-ls 1.0000 * 0.8682 1.0000 1.0000 1.0000

s-plus 1.0000 0.9959 * 1.0000 1.0000 1.0000

ann 1.0000 0.3877 0.1945 * 0.9966 1.0000

mlr 1.0000 0.1821 0.0773 0.8548 * 1.0000

cbr 1.0000 0.0014 0.0004 0.0414 0.1134 *



FAU Technical Report TR-CSE-01-32 37

Table 7: Performance Order: llts case study

Average Absolute Error

cart-lad < cbr < mlr < ann < cart-ls < s-plus

Average Relative Error

cart-lad < cbr < mlr < ann < cart-ls < s-plus

were built over all the test data sets, i.e., Release 2, 3, and 4. The results of the anova

models are presented in Table 5. Notations of Table 5 are, DF - degrees of freedom, SS

- sums of squares, MS - mean squares, and F - the F statistic [2].

It is observed from Table 5, for both aae and are the system releases are signi�-

cantly apart from each other (p-value = 0.001 and 0.004, respectively). It is also seen

that the prediction techniques are also signi�cantly apart from each other, i.e, p-value

= 0.001 (aae) and 0.000 (are). However, the llts-raw and llts-pca models inter-

estingly performed similar, i.e., have similar prediction accuracies. Since the aae and

are values of the prediction techniques are signi�cantly di�erent from each other, we

proceeded with multiple-pairwise comparisons of the di�erent techniques.

Each of the six modeling methods is compared with the other �ve methods using

a one-tailed pairwise comparison. For example, cart-lad is compared with cart-ls,

s-plus, cbr, ann, and mlr individually. Thus for each pair of techniques we have

two comparisons, for example, is cart-lad better than cbr? and is cbr better than

cart-lad?. The p-value of the comparison is computed, and is used to observe whether

a method is better than the one it is compared with.
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Table 6 presents the p-values obtained from multiple pairwise comparisons. Com-

parisons are shown for both aae and are performance metrics. The table can be viewed

as a matrix, i.e., each pair of two methods forms a comparison. This implies each method

listed in the �rst column is compared with (except itself) methods listed as headings of

subsequent columns. For example, cart-lad vs. cart-ls, cart-lad vs. s-plus, and

so on. Methods are not compared to themselves, and this is indicated by a `*' in the two

tables. Since we compared six prediction techniques, there are 30 comparisons for each

of the performance metrics. The p-values indicate the signi�cance level of the di�erence

in aae or are values between two prediction techniques, and are used to conclude the

�nal performance or rank order.

To indicate how we inferred the �nal performance order of the prediction methods,

we present details for are in the next few paragraphs. A similar approach was followed

in computing the performance order for aae. Lets look at the are section of Table 6.

Comparisons cart-lad vs cart-ls, cart-lad vs s-plus, cart-lad vs ann, cart-lad

vs mlr, and cart-lad vs cbr have very low p-values, therefore indicate that cart-lad

has better predictive accuracy than the other �ve techniques. Hence, cart-lad will be

ranked �rst in the �nal order. Lets denote this deduction as Da.

From comparisons cbr vs cart-lad (p = 1.0000), cbr vs cart-ls (p = 0.0014),

cbr vs s-plus (p = 0.0004), cbr vs ann (p = 0.0414), and cbr vs mlr (p = 0.1134)

it is observed that cbr is better than all techniques except cart-lad (veri�ed by Da).

Hence, cbr will be ranked second in the �nal order. Lets denote this deduction as Db.

Comparisons mlr vs cart-ls (p = 0.1821), mlr vs s-plus (p = 0.0773), mlr

vs ann (p = 0.8548), and ann vs mlr (p = 0.9966) indicate that mlr is signi�cantly

better than both cart-ls and s-plus, but is only slightly better than ann. Using this
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observation together with Da and Db, we conclude that mlr will be ranked third in the

�nal order.

From comparisons ann vs cart-ls (p = 0.3877) and ann vs s-plus (p = 0.1945)

we observe that ann is better than both cart-ls and s-plus, and will be placed fourth

in the rank order since we already have the �rst three. cart-ls will be placed before

s-plus because comparisons cart-ls vs s-plus (p = 0.8682) and s-plus vs cart-ls

(p = 0.9959) demonstrate that cart-ls performs slightly better than s-plus. Hence,

cart-ls and s-plus will be placed �fth and sixth in the �nal rank order.

Performance orders for both aae and are are shown in Table 7. The modeling

techniques are ordered from left to right with decreasing prediction accuracy. The symbol

`<' in the table indicates that the left hand side method has better fault prediction than

the method on the right hand side. Thus, it is observed that cart-lad and cbr yield

better fault prediction as compared to mlr and ann, which in turn are better predictors

than cart-ls and s-plus.

6 Conclusions and Future Work

Software reliability is an important attribute of high-assurance and mission-critical sys-

tems. Such complex systems are heavily dependent on reliability and stability of their

underlying software applications. The challenges involved in achieving high software re-

liability increases the importance in developing and quantifying measures for software

quality. Early fault prediction, a proven technique in achieving high software reliability,

can be used to direct cost-e�ective quality enhancement e�orts to modules that are likely

to have a high number of faults.
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Software quality models based on software metrics can yield predictions with useful

accuracy. Such models can be used for early fault predictions in software quality esti-

mation applications. Fault prediction models, based on software metrics, can predict the

number of faults in software modules.

In this paper we compare the fault prediction accuracies of six commonly used pre-

diction modeling techniques, cart-ls, cart-lad, s-plus, cbr, ann, and mlr. The

large-scale case study used in this comparative study, comprised of data collected over

four historical system releases of a very large legacy telecommunications system. Models

were built using raw metrics as well as domain metrics (pca). Two-way anova models,

with two blocking variables (system release and model type) were designed (over all re-

leases) to investigate, if the releases were di�erent from each other, if the techniques were

di�erent from each other, and if the raw models were di�erent from the corresponding

pca models. The anova models were designed with average absolute error and average

relative error as the response variables.

From the anovamodels, it was observed that the releases and the modeling methods

were signi�cantly di�erent than their respective counterparts, while the raw models and

pca models gave similar results. Therefore, it is indicated that pca may not necessarily

improve fault prediction accuracy of software quality models. However, it should be

noted that pca removes correlation among the raw metrics and the resulting models

are more robust.

Multiple-pairwise comparisons for the six modeling techniques were performed, and a

performance or rank order was determined based on the p-values obtained. The compar-

isons were performed for both aae and are. The rank order of the six modeling methods

suggest that cart-lad and cbr have superior fault prediction accuracy than mlr, ann,



FAU Technical Report TR-CSE-01-32 41

cart-ls, and s-plus. In the �nal rank order for both aae and are, cart-lad was

ranked �rst while s-plus was ranked sixth.

Future work in related research areas may include investigating a similar comparative

study, with software metrics from a software system other than a telecommunications

system.
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A Principal Components Analysis

Software metrics extracted (raw metrics) from con�guration and problem reporting sys-

tems are often heavily correlated to each other [22]. This is usually because they often

represent measurements of related attributes of the given software system. The correla-

tion among the independent variables, can often lead to poor robustness and prediction

accuracy of models built based on them. Principal components analysis (pca) is a sta-

tistical technique that is used to alleviate the problems due to correlation of independent

variables.

The raw metrics are transformed into a smaller set of linear combinations that

account for, most if not all the variance of the raw data set. pca also reduces the

number of independent variables used in building models. The principal component

variables are called domain metrics as compared to original independent variables which

form the raw metrics. The �rst principal component, accounts for the largest fraction

of the total variance in the original data. Let's denote the �rst component by PC1.

Thus PC1 is the linear combination of the observed independent variables xj, where
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j = 1; 2; : : : ; m.

PC1 = w(1)1x1 + w(1)2x2 + � � �+ w(1)mxm (31)

In the above equation, the weights w(1)1; w(1)2; : : : ; w(1)m have been chosen to maximize

the ratio of the variance of PC1 to the total variance, subject to the constraint that

Pm
j=1w

2
(1)j = 1. The second principal component, PC2, is the weighted linear combination

of the observed variables that are not correlated with the �rst linear combination (i.e.,

PC1), and accounts for the maximum amount of the remaining total variance. Let's

denote the second component by PC2. In general, the ith principal component is the

weighted linear combination of the x's and is given by,

PCi = w(i)1x1 + w(i)2x2 + � � �+ w(i)mxm (32)

It is possible to extract the same number of principal components as the number of the

original variables. The goal however, is to account for most of the total variance with as

few principal components as possible. Therefore, a stopping rule is introduced to choose

as few domain metrics as possible. Hence, given m software metrics, a stopping rule

chooses p� m domain metrics and ignores the remaining domain metrics because they

have insigni�cant variation across the data set. The stopping rule, terminates principal

components analysis, once a particular variance is accounted for during analysis.

Suppose we have m product measurements on each of the n modules. PCA performs

the following calculations, given an n�m matrix of standardized metric data, Z.

1. Compute the covariance matrix, �, of Z.

2. Compute the eigenvalues, �j, and the eigenvectors, ej, of �, j = 1; : : : ; m.
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3. Minimize the dimensionality of the data. If we choose to explain at least 90% of the

total variance of the original standardized metrics, we then choose the minimum p

such that
Pp

j=1 �j=m � 0:90.

4. Compute a standardized transformation matrix T, where each column is de�ned

as,

tj =
ejq
�j

for j = 1; : : : ; p (33)

5. Compute the domain metrics for each module, where

Dj = Ztj (34)

D = ZT (35)

The �nal result, of a principal components analysis of a given raw metrics, is an

n � p matrix of domain metrics data D, where each domain metric, Dj, has a mean of

zero and a unit variance.


